SYNTHESIS AND CYTOTOXIC ACTIVITY OF SOME HETEROCYCLIC CHALCONES

Yordanka Ivanovaa, George Momekovb, Ognyan Petrova,
Margarita Karaivanovab, Veneta Kalchevaa

aFaculty of Chemistry, Sofia University, 1164 Sofia, Bulgaria,
bFaculty of Pharmacy, Medical University, Sofia 1000, Bulgaria

A variety of chalcones possess cytotoxicity towards a number of different tumor cell lines. While chalcone displayed minimal activity towards human colon adenocarcinoma cell line having an IC\textsubscript{50} figure greater than 100 \(\mu\)M, the related hydroxy compounds had IC\textsubscript{50} values in the range of 2-23 \(\mu\)M. In this study, we report the synthesis of new heterocyclic chalcones 3, including protected hydroxyl group in 1,3-oxazole cycle. Some Mannich bases reported recently, had more cytotoxicity than the corresponding chalcones. We prepared Mannich bases 4 of some of the heterocyclic chalcones 3.

\[
\begin{align*}
R^1 & \quad \text{N} \quad \text{O} \quad \text{O} \\
\text{1} & \quad \text{H}_2 \quad \text{C} \quad \text{N} \quad \text{O} \quad \text{O} \\
\text{2} & \quad \text{H}_2 \quad \text{C} \quad \text{N} \quad \text{O} \quad \text{O} \\
\text{3} & \quad \text{H}_2 \quad \text{C} \quad \text{N} \quad \text{O} \quad \text{O} \\
\text{4} & \quad \text{H}_2 \quad \text{C} \quad \text{N} \quad \text{O} \quad \text{O}
\end{align*}
\]

(a) CH\textsubscript{3}COCl, AlCl\textsubscript{3}-DMF; (b) aldehyde, aq. KOH, EtOH; (c) secondary amine, CH\textsubscript{2}O, EtOH

The compounds revealed a pronounced cytotoxic potential in BV-173 cells as assessed by the MTT assay. Preliminary data indicate that these chalcones trigger a necrotic type of programmed cell death as documented by DNA isolation, electrophoretic analysis, ethidium bromide staining and UV-transillumination. As a continuation of our systematic studies on 1,3-azoles, our present aim was the preparation and investigation of isomeres of the aforementioned compounds.

\[
\begin{align*}
R^1 & \quad \text{NHCCH}_3 \quad \text{O} \quad \text{O} \\
\text{OH} & \quad \text{H}_3 \quad \text{C} \quad \text{O} \quad \text{O} \\
\text{NHCOCH}_3 & \quad \text{H}_3 \quad \text{C} \quad \text{O} \quad \text{O} \\
\text{NHCH}_3 & \quad \text{H}_3 \quad \text{C} \quad \text{O} \quad \text{O} \\
\text{H}_3 \quad \text{C} & \quad \text{O} \quad \text{O} \\
\text{H}_3 \quad \text{C} & \quad \text{O} \quad \text{O} \\
\text{H}_3 \quad \text{C} & \quad \text{O} \quad \text{O} \\
\text{H}_3 \quad \text{C} & \quad \text{O} \quad \text{O} \\
\text{H}_3 \quad \text{C} & \quad \text{O} \quad \text{O}
\end{align*}
\]

(a) CH\textsubscript{3}COCl, AlCl\textsubscript{3}-DMF; (b) HCl; (c) 1,1’-Carbonyldiimidazole, THF; (d) aldehyde, aq. KOH, EtOH, r.t.